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On the stability of motion of a radiating electron 

W Maass and J Petzold 
Department of Physics, University of Marburg, D 3550 Marburg, West Germany 

Received 6 October 1977, in final form 23 January 1978 

Abstract. An integro-differential equation of motion for the radiating electron is pro- 
posed. In some special cases the stability of the solutions is investigated. 

1. The equation of motion 

In the classical theory of radiation reaction, charged particles are usually assumed to 
be point-like. This assumption leads to the deduction of the well known Lorentz- 
Dirac equation of motion: 

Here m means the (total) mass of the particle, { U ” } = { U ~ ,  U”} its four-velocity, T the 
proper time and K ” the external forces. 

This equation contains run-away solutions and other unphysical properties, often 
discussed in the literature (cf the review article by Erber 1961). The modifications 
proposed hitherto are not satisfying. One of the reasons may be as follows. 

In the theory of special relativity there exists no rigid body. An extended particle 
possesses an infinite number of internal degrees of freedom (von Laue 1911), whereas 
a point particle has none. So in a strictly mathematical sense equation (1.1) is not 
derivable from an equation of motion for an extended particle by going to the limit of 
vanishing extension. The limit is not well defined but shows singularities. 

In order to get an improved equation of motion for the centre of mass the 
properties of an elastic body have to be simulated. Let us argue heuristically. 
Consider a particle with a radially symmetrical charge density distribution. During the 
acceleration process it may radiate an electromagnetic wave in a distance c g  from the 
centre. Travelling only with velocity less than the speed of light the reaction cannot 
reach the centre before a time U has elapsed. The magnitude of the reaction depends 
on the charge density of the emitting locus. Therefore the total radiation reaction on 
the motion of the centre should be described by an expression of the form 

1 P P  

Q ” ( T )  = J f(u)u y ( ~  - U) dU 
P o  

where cp characterises the extension of the particle (diameter), and the structure 
function (form factor) f(g) takes into account the charge distribution (cf footnote to 
equation (1.3)). 
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Denoting the electromagnetic inertia by me and if present the mechanical inertia 
by m, the following equation of motion is suggested: 

The third left-hand term is added in order to make the system of differential equations 
consistent. The four-force and the four-velocity are mutually orthogonal in the 
Minkowski space. (The foundation of equation (1.3) on the Maxwell-Lorentz theory 
is far beyond the scope of this paper, It turns out to be rather lengthy and sophisti- 
cated and will be published elsewhere. Nevertheless it is easy to see that (1.3) has 
something to do with radiation reaction: in the limit p + 0 (cf (1.5)) one arrives at the 
Lorentz-Dirac equation (1.1). 

The structure of (1.3) can be made plausible by sketching some of the first steps of 
a derivation from the basic equations of electrodynamics. Starting from the equation 
of motion m,riY(7) = K" + K," the self-force on the particle is given by the Lorentz 
force density 

U 0  
K r  =- SA'" d3x 

C 

U' a 
C ax, C 
=-I s , - -A:d d3x=XI+X2.  

Substitute the self-field Fi" by the retarded potentials, e.g. in X2: 

U' a 
2; = -7 J 2(s"A:)d3x 

U' a 
c ax 

sO(XO, ~ " ) D , , ~ ( x ~ - x * ~ ,  X "  - x * " ) ~ @ ( x * ~ ,  2") d3xd4X*. 

The non-relativistic limit of the space-like components is 

X;- q ( x r ) D r e t ( c ( t - f ) , x " - X l " ) q ( X l m ) d 3 x  d3X*v"(f)df 
at c 

q is the charge density in the rest frame. From the properties of q and D,,, it follows 
M(cr) = 0 if (T > p with cp = diameter of the particle. The relativistic generalisation 

is part of (not identical with) the second term on the left-hand side of equation (1.3) 
and has the same structure with respect to (1.2). 

The discussion of XY is much more complicated and has to be omitted here. But it 
remains true, that f(cr) is a bilinear form of the charge density of the particle.) 

Only the product mef(cr) enters into equation (1.3). To make me definite, we 
choose the normalisation condition 

1 r p  

f ( v ) d c r = l .  
P o  
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The connection of the parameters with the experimental data is established by 
comparing (1.1) and (1.3) after letting p + O  (though this is mathematically not 
justified): 

m=m,+m, 

uf (a) da.  2 e 2  
3 c 2 -  

The quantity proportional to Q w u ,  corresponds to the radiated energy. It must be 
negative semi-definite for all particle motions 

O ~ Q ” ( T ) U ~ ( T )  

d 
P o  d a  

P 

= -1 J f ( a ) u , ( ~ ) - - ( u ~ ( ~ - u ) - u ~ ( 7 ) ) d u  

1 l P  

P P o  
= - - f ( p ) ( U w ( 7 ) U w ( T  -p ) -C2)+-  I ~ I ( ( T ) ( U ~ ( T ) U ” ( T  -a)- C 2 )  d r .  (1.6) 

2 With regard to U, (7 )u  (7 - u) 2 c this is satisfied if 

f ( P ) S O  

f ( a )  6 0 if Osusp. 

These conditions imply 

and with respect to (1.2) and (1.4) 

~ ‘ ( 7 )  = J f ( u ) u ’ ( ~  - a) d a  3 c. 
P o  

Q” is a time-like four-vector, because Qo 2 c > 0 is true in every Lorentz frame. 
The energy proportional to r i0  contained in the Schott term 

2 e 2  U o ( T )  
3 c 2  d7 

of equation (1.1) is indefinite and unbounded from below. It gives rise to the 
unwanted self-accelerations and run-away solutions. On the contrary, the analogue 
term meQo in equation (1.3) is positive definite and the particle is prevented from 
self-accelerations (Petzold and Sorg 1977). 

The new equation (1.3) is a functional differential equation. The initial value 
problem is determined not only by the data of the particle at a fixed time T~ but by the 
trajectory section in a time interval T~ - p  T 70. So the infinitely many degrees of 
freedom of extended bodies may be simulated in this manner. 

It will be shown that equation (1.3) admits damped oscillations, especially in the 
neighbourhood of stable solutions. The ‘zifferbewegungen ’ of the centre of mass 
simulate the vibrations of elastic bodies. Internal energy is radiated away and the 
oscillations are damped. The larger m, the more sluggish the system and the damping 
is increasing. The damping constant is not bounded in the limit m, + (cf 0 3 and 
Petzold and Sorg 1977). 
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2. Radiationless motions 

It is well known that an accelerated charge generally radiates. But there is an old 
controversy. Does a charged particle radiate or not if it is accelerated constantly? (cf 
Fulton and Rohrlich 1960, and references therein). For this reason we want to answer 
the question: provided that the new equation of motion (1.3) is correct, are there 
radiationless trajectories with non-constant velocities? The vanishing of the radiation 
implies Q ” u ~  = 0. Because ~ 3 4 ~ ~ ) ~  = c 2  if and only if u t )  = U&), one infers from (1.6) 
and (1.7) that 

U @ ( T - p ) =  U @ ( T )  i f f (P ) fO  

U @(T - a )  = U @ ( T )  
(2.1) 

if f ’ (cr )  # 0 and u E [O,  p ] .  

In a similar way to (1.6) one obtains from (1.2) 

J P  1 
P P o  

Q @ ( T )  = - - f ( p ) ( u @ ( ~  - p ) -  u @ ( T ) ) + -  f ( a ) ( u @ ( ~  -a)- u @ ( T ) )  da.  

Now it is easy to see that (2.1) implies Q ” ( T ) = ~ .  If A c E I O , p ~ f ’ ( u ) #  0, then radiation- 
less trajectories exist only if u @ ( T - u ) = u ” ( T ) ,  i.e. U @  is constant or K” is zero 
according to (1.3), that means, only the force-free motion does not radiate. 

Consequently charged particles radiate when they are accelerated by a constant 
force. They are retarded relative to a non-radiating (neutral) particle. Free falling in a 
constant gravitational field, they do not represent a flat inertial system in the sense of 
Einstein’s principle of equivalence. 

We see this from a simple calculation. We consider the one-dimensional motion in 
a constant electric field. The relevant component of the Lorentz force eu,F@” = K ” is 
K’ = euoE. We make the ansatz 

2 3  U’ = c cosh w ( T ) ,  U’ = c sinh w ( T ) ,  U = U  = o  
and introduce this into equation (1.3): 

e 
m,d ( T ) +  me - f ( ( + ) h ( ~  - a )  COSh(w(7)- W ( T  - a))  d g  = -E. 

P o  IP C 

If the four-acceleration is constant, d = b/c, we obtain the condition 

l P  
f(u) cosh (balc) da) b. 

Hence the effective acceleration b is less than eE/(m,+m,) ,  which is the 
acceleration of a non-radiating particle of the same total mass. 

Specifying the form factor f (a)= l(f’(cr)= 0) in (1.3) a modified Caldirola equa- 
tion, i.e. a differential equation with delay, is obtained (Petzold and Sorg 1977). Then 
all motions of periodicity p created by appropriate forces are radiationless. According 
to equation (1.3) the inertia is given then by the mechanical mass m, only. Those 
trajectories have nothing to do with stationary states in quantum mechanics. These 
occur in binding potentials only. On the contrary, the above mentioned trajectories 
arise even in constant magnetic fields in the form of circular orbits. This example was 
numerically computed and discussed by Heudorfer and Sorg (1977a). Heudorfer and 
Sorg (1977b) and Sorg (1977) also treated the one-dimensional motion in a 
regularised Coulomb potential. The analysis of circular orbits in a Coulomb potential 
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(the trivial calculations are omitted here) shows that the non-radiating condition does 
not correspond to Bohr’s quantisation rules. No lower bound exists for the energy, no 
accumulation of energy states at the ionisation continuum is observed. Moreover, the 
periodical radiationless trajectories are not stable. The condition of periodicity is 
satisfied only by some special initial values only. Initial values of lower energy violate 
this condition. The particle must radiate and its path diverges more and more from 
the former. In addition, an instability occurs in the structure of the particle. A slight 
modification like f +f= (1 - m ) / ( l  -&p)  so that f’ is very small but not zero, destroys 
the radiationless motions, because now only U’ being a constant means no radiation 
as pointed out above. We think that the special structure function f = 1 is not very 
interesting. (The case m ,  = 0 had been investigated by Caldirola (1956). It admits 
undamped oscillations even for force-free motions.) 

3. Energy conservation and Lyapunov functionals 

The external forces acting on charged particles are of electromagnetic origin: 

K ”  = eurF’“ = euc,(A””-A”’”) .  (3.1) 

For time-independent fields A’” = aAc,/axo = 0 the energy conservation has the 
following form: 

1 d 0 -(m,cu ( T ) +  m , c Q ’ ( ~ ) +  eA’(x”(7)))  = - m , @ ” ‘ ~ ) u c , ( ~ ) u O ( ~ ) .  
dT C 

(3.2) 

The left-hand expression describes the variation of the energy E in time, composed of 
kinetic and potential energy terms 

8 = m , ~ ~ o ( ~ ) + ~ e C Q O ( ~ ) + e A O ( ~ ) .  (3.3) 

The right-hand side of (3.2) gives the energy radiated away per unit time. This term is 
negative, so that the energy 8 decreases in time. 

Provided that the potential is positive, then 8 is positive and yields a Lyapunov 
functional. Hence lim,,m 0%’ = 0. The particle asymptotically approaches a tra- 
jectory, which is radiationless but not necessarily stable (as pointed out in § 2 in the 
case off  = 1). 

If A m E ~ o , p ~ f ’ ( ~ ) Z O ,  then (cf § 2) Q’+O and u’I tends to a constant and 
consequently K’ + C according to (1.3). The force equals the (negative) gradient of 
the potential. Therefore the particle comes to rest at an extreme point of the 
potential. The stationary point is stable, if it is a minimum of the potential. 

Let us see for K” = 0 how a radiationless path is approached. Because uc, tends to 
a constant we may choose a Lorentz frame in which the particle asymptotically comes 
to rest. For the sake of simplicity put 

f (c .>=2(P-a) /P 

f (P)  = 09 

i.e. 
f ’ ( c r )  = constant = -2/p 

(3.4) 

and consider the one-dimensional motion U ’  = U, U’ = u 3  = 0. With regard to (1.6) 



1216 WMaass and J Petzold 

and (2.2) the equation of motion (1.3) becomes 
I r p  

In view of U + 0 we may asymptotically use the linearised equation 

This equation can be solved by Laplace transformation. But for our purposes it is 
sufficient to consider damped oscillations 

u(T)KexP ( Y d P ) .  (3.7) 

The negative real part - y l / p  of the complex frequency y/p = (yl  +iy2)/p is the 
damping constant, the imaginary part y2/p is the frequency of the oscillation. 

From (3.6) and (3.7) we derive the equation for y :  

1 - y -Cy =Ay2. (3.8) 

Apart from the trivial solution y = 0 a discussion of (3.8) shows the following. We 
have - y l>O for every value of m,>O. The weakest damping is characterised by 
-yl > 2. The system is damped very strongly even in the case of missing mechanical 
inertia m ,  = 0. Adding the mechanical mass the damping increases and the stability is 
improved. 

Putting (3.8) in the form 

[e- '-(1-y+ty2)]= - ( A  +$) 

it is easily seen, that m,-+ CO implies /yI  + 00. Because of dy2/dA 3 0 for y2 I O  (which 
is easily inferred from (3.8)) one concludes lim,,,,+m (-yl)-. 00. 

Thus the free motion is asymptotically stable, where we remark that simple 
stability is a consequence of (3.2) and (1.9): 

" c U O ( T O ) +  m,cQO(TO) 

0 
3 ~ , c u ' ( T ) +  ~ , C Q ~ ( T ) Z ~ , C U  (T)+ m,c2 for T 3 T O  

i.e. - U ( T ) u , ( T )  is bounded. 

4. Stability behaviour of a special equation of motion for f (u) = 1 

In spite of the purpose being to investigate the stability properties of the integro- 
differential equation (1.3) in a further paper, it seems to be methodically instructive to 
treat here in some detail the Lyapunov stability of the solutions of the equation of 
motion corresponding to the case f(u)= 1 (Petzold and Sorg 1977). 

A comparison of the paper by Petzold and Sorg (1977) and 9 3 shows that the 
introduction of f(v)* 1 causes an improvement of the local stability for the free 
motion. 
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Let us consider the following special case of the one-dimensional motion (cf 
Petzold and Sorg 1977) for f(a)= 1 and 

( ~ u ” ( T ) }  ={cosh o(T) ,  sinh w ( T ) ,  0,O) 

h ( ~ ) + a  sinh AoJ(T)= k ( ~ )  
where 

a = m,/pm,,  

Au(T)= w ( T ) -  W ( T  - p ) .  

p = constant > 0 

Let M = ( w ~ ( T ) +  constant) be the set of solutions of (4.1) which we want to examine 
for stability, where o ~ ( T )  is a solution of (4.1). We reformulate the problem such that 
the stability of the set of solutions fi E constant of the following equation of motion 
has to be investigated: 

C ( T )  = -a sinh(Au(.r)+ Aw~(T))+ / ( T )  (4.2) 
where 

U (7)  = w (7)  - w o ( ~ )  

1 ( ~ )  k (7 )  - & ( T )  = Q sinh Awo(T). 

Let us abbreviate the right-hand side of (4.2): 

g[u( . r ) ,  U ( T - p ) ;  T :  =-a sinh(Au(T)+AuO(T))+l(~).  

We assume existence (boundedness and continuity) and uniqueness of the solution 
U ( T )  of (4.2) for given initial value limr+ro+O U(.) = U(’) and given forerunning function 

First, we use the following special case of a theorem of Razumikhin (1956) (cf also 
U(T)‘4(T)fOr T o - p ~ T ~ T o .  

Hahn 1959). 

Theorem. Let the equation 

i(T)=f(X(T), X(7-P); 7 )  

be given with 

f(0,O; T ) =  0 and p = constant > 0, 

satisfying the above mentioned existence and uniqueness properties. The null solu- 
tion of this equation is stable if there exists a positive-definite function L(y  ; T )  with the 
following property. 

In the case of L[X(S);S]SL[X(T);T] for all S E [ T - ~ , T ]  along a solution the 
functional 

is not positive. 

above conditions, then the null solution is asymptotically stable. 

t We refer to the usual definition that a scalar function W ( x ;  T ) ,  x E R ,  is decrescent in R if a positive- 
definite function V ( x )  exists such that, for all x E R  and all T, I W ( x ;  T ) /  6 V ( x ) .  

If furthermore L is decrescent? and U is negative-definite with respect to the 
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For (4.2) we choose the positive-definite decrescent function L ( v )  = v 2  and get 

dL 
-=2V(7)g[v(7), v ( 7 - P ) ;  71 dr 

where 

g [v (7 ) ,  v ( 7 - p ) ;  71 

= -a[cosh Au0(7)sinh hv(T)+sinh huo(.r)(cosh hv(7)- l)]. 

The properties of the hyperbolic functions allow the estimation 

g(x ,  Y ;  T I {  z; for IY I d 1x1 
X a x = y  

for x # 0. 
In the case of L [ v ( ~ - p ) ] s L [ v ( ~ ) ] ,  i.e. ~ o ( T - ~ ) ~ S ~ ~ ( T ) ~ ,  .we have therefore 

d L [ u ( ~ ) ] / d ~  s 0. Consequently, the stability condition of the theorem is certainly 
satisfied, i.e. A? is stable. 

We add that v = 0 can be mapped on any v equal to a constant by a Lorentz 
transformation. 

Now we show that a trajectory of (4.2) which is contained in a set M T E  
{ u J h v ( ~ ) = O  for any 7 2  T} ,  T 3 ~ ~ ,  tends to a constant.. 

For a trajectory GEM=, T S T ~ ,  of (4.2) we have v^=O for any 7 2  T and, suc- 
cessively, by differentiation of (4.2) G ( “ ) ( T ) =  0 for any T 2 T + (n - l)p, n = 
1 ,2 ,3 ,  . . . , such that limT+m Ol(“’(7) = 0 for all n = 1 ,2 ,3 .  . . . This proves the pro- 
position. 

For a trajectory v of (4.2) with v ( 7 )  # 0 and Av(T)  # 0 at time 7 the condition 
L[v(s)] d L[v(T)], 7 - p  d s 

From the above-proved stability and the proposition just settled about MT we 
conclude that the set A? of solutions of (4.2) (and M of (4.1), respectively) is 
asymptotically stable generally. We remark that this result refers to cases not covered 
by the considerations in § 3, e.g. constant accelerations. 

T of the theorem yields that d L [ v ( ~ ) ] / d ~  is negative. 

Appendix. Conjecture on limitations of stability 

The equation of motion (1.3) admits solutions where, in spite of radiation, a charged 
particle is more accelerated than an uncharged one, which possesses an equal mass but 
does not radiate and is moving in the same external force field: (m,+me)ri” = K ” .  

From a mathematical point of view this is easy to see: according to (1.3) ri”(7) is 
determined not only by the force but the forerunning behaviour of ~ ” ( 7 - ( T )  for 
0 < U  C p also enters. For further discussion write (1.3) in the following form: 

( m m +  me)ri”(T) 

1 
f((~)(Zi”(r) - ri ”(7 - cr)) d v  + 7 me@ (7)uw ( T ) u ” ( T ) .  

C 

If ri”(7 -c)< r i ” ( ~ ) ,  then the second term on the right-hand side works like an 
additional accelerating force, meanwhile the radiation reaction force @”‘,U “/c2 
vanishes in the momentary rest frame of the particle. This proves the statement. 
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Forces increasing along the trajectory may accelerate the particle in such a manner 
that U " (T -U) < U "  ( T )  is fulfilled even on a finite part of the path. This was observed 
by Sorg (1977) along a one-dimensional motion in a Coulomb potential in the case of 
f-1. 

This phenomenon is intelligible by considering a model of extended charged 
particles. A force accelerating the front more than the back stretches the charge 
distribution. The Coulomb energy is lowered and the escaping energy may addition- 
ally accelerate the centre. 

The more the charge density is concentrated the greater the mechanical stress has 
to be to maintain the equilibrium. f '(a) may be considered as a measure of the charge 
concentration and hence of the stress, too. With increasing stress the body becomes 
more rigid and it is more difficult to stretch it. It is supposed that in our theory the 
dilatation of the particle is pictured by the expression U " ( T ) -  z ~ " ( T  -v). 

The non-existence of rigid bodies implies the boundedness of the stress tensor. 
Hence forces increasing too rapidly should destroy the particle. It may happen that in 
the presence of such external forces the existence of solutions of equation (1.3) is no 
longer guaranteed in general. 
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